Cpp ML Library
1.0.0
A library of Machine Learning Algorithmns seen from the Udemy course Machine Learning A to Z.
|
Implements a Decision Tree Regressor. More...
#include <DecisionTreeRegressor.hpp>
Public Member Functions | |
DecisionTreeRegressor (int max_depth=5, int min_samples_split=2) | |
Constructs a DecisionTreeRegressor. More... | |
~DecisionTreeRegressor () | |
Destructor for DecisionTreeRegressor. | |
void | fit (const std::vector< std::vector< double >> &X, const std::vector< double > &y) |
Fits the model to the training data. More... | |
std::vector< double > | predict (const std::vector< std::vector< double >> &X) const |
Predicts target values for given input data. More... | |
Implements a Decision Tree Regressor.
DecisionTreeRegressor::DecisionTreeRegressor | ( | int | max_depth = 5 , |
int | min_samples_split = 2 |
||
) |
Constructs a DecisionTreeRegressor.
max_depth | The maximum depth of the tree. |
min_samples_split | The minimum number of samples required to split an internal node. |
void DecisionTreeRegressor::fit | ( | const std::vector< std::vector< double >> & | X, |
const std::vector< double > & | y | ||
) |
Fits the model to the training data.
X | A vector of feature vectors. |
y | A vector of target values. |
std::vector< double > DecisionTreeRegressor::predict | ( | const std::vector< std::vector< double >> & | X | ) | const |
Predicts target values for given input data.
X | A vector of feature vectors. |