|
Cpp ML Library
1.0.0
A library of Machine Learning Algorithmns seen from the Udemy course Machine Learning A to Z.
|
Implements a Decision Tree Regressor. More...
#include <DecisionTreeRegressor.hpp>
Public Member Functions | |
| DecisionTreeRegressor (int max_depth=5, int min_samples_split=2) | |
| Constructs a DecisionTreeRegressor. More... | |
| ~DecisionTreeRegressor () | |
| Destructor for DecisionTreeRegressor. | |
| void | fit (const std::vector< std::vector< double >> &X, const std::vector< double > &y) |
| Fits the model to the training data. More... | |
| std::vector< double > | predict (const std::vector< std::vector< double >> &X) const |
| Predicts target values for given input data. More... | |
Implements a Decision Tree Regressor.
| DecisionTreeRegressor::DecisionTreeRegressor | ( | int | max_depth = 5, |
| int | min_samples_split = 2 |
||
| ) |
Constructs a DecisionTreeRegressor.
| max_depth | The maximum depth of the tree. |
| min_samples_split | The minimum number of samples required to split an internal node. |
| void DecisionTreeRegressor::fit | ( | const std::vector< std::vector< double >> & | X, |
| const std::vector< double > & | y | ||
| ) |
Fits the model to the training data.
| X | A vector of feature vectors. |
| y | A vector of target values. |
| std::vector< double > DecisionTreeRegressor::predict | ( | const std::vector< std::vector< double >> & | X | ) | const |
Predicts target values for given input data.
| X | A vector of feature vectors. |