|
Cpp ML Library
1.0.0
A library of Machine Learning Algorithmns seen from the Udemy course Machine Learning A to Z.
|
Agglomerative Hierarchical Clustering for clustering tasks. More...
#include <HierarchicalClustering.hpp>
Public Types | |
| enum class | Linkage { SINGLE , COMPLETE , AVERAGE } |
| Linkage criteria for clustering. | |
Public Member Functions | |
| HierarchicalClustering (int n_clusters=2, Linkage linkage=Linkage::AVERAGE) | |
| Constructs a HierarchicalClustering instance. More... | |
| ~HierarchicalClustering () | |
| Destructor for HierarchicalClustering. | |
| void | fit (const std::vector< std::vector< double >> &X) |
| Fits the clustering algorithm to the data. More... | |
| std::vector< int > | predict () const |
| Predicts the cluster labels for the data. More... | |
| std::vector< std::vector< double > > | get_cluster_centers () const |
| Retrieves the cluster centers (centroids) after fitting. More... | |
Agglomerative Hierarchical Clustering for clustering tasks.
| HierarchicalClustering::HierarchicalClustering | ( | int | n_clusters = 2, |
| Linkage | linkage = Linkage::AVERAGE |
||
| ) |
Constructs a HierarchicalClustering instance.
| n_clusters | The number of clusters to form. |
| linkage | The linkage criterion to use. |
| void HierarchicalClustering::fit | ( | const std::vector< std::vector< double >> & | X | ) |
Fits the clustering algorithm to the data.
| X | A vector of feature vectors (data points). |
| std::vector< std::vector< double > > HierarchicalClustering::get_cluster_centers | ( | ) | const |
Retrieves the cluster centers (centroids) after fitting.
| std::vector< int > HierarchicalClustering::predict | ( | ) | const |
Predicts the cluster labels for the data.