Cpp ML Library
1.0.0
A library of Machine Learning Algorithmns seen from the Udemy course Machine Learning A to Z.
|
Implements a Random Forest Regressor. More...
#include <RandomForestRegressor.hpp>
Public Member Functions | |
RandomForestRegressor (int n_estimators=10, int max_depth=5, int min_samples_split=2, int max_features=-1) | |
Constructs a RandomForestRegressor. More... | |
~RandomForestRegressor ()=default | |
Destructor for RandomForestRegressor. | |
void | fit (const std::vector< std::vector< double >> &X, const std::vector< double > &y) |
Fits the model to the training data. More... | |
std::vector< double > | predict (const std::vector< std::vector< double >> &X) const |
Predicts target values for given input data. More... | |
Implements a Random Forest Regressor.
RandomForestRegressor::RandomForestRegressor | ( | int | n_estimators = 10 , |
int | max_depth = 5 , |
||
int | min_samples_split = 2 , |
||
int | max_features = -1 |
||
) |
Constructs a RandomForestRegressor.
n_estimators | The number of trees in the forest. |
max_depth | The maximum depth of the tree. |
min_samples_split | The minimum number of samples required to split an internal node. |
max_features | The number of features to consider when looking for the best split. Defaults to sqrt(num_features). |
void RandomForestRegressor::fit | ( | const std::vector< std::vector< double >> & | X, |
const std::vector< double > & | y | ||
) |
Fits the model to the training data.
X | A vector of feature vectors. |
y | A vector of target values. |
std::vector< double > RandomForestRegressor::predict | ( | const std::vector< std::vector< double >> & | X | ) | const |
Predicts target values for given input data.
X | A vector of feature vectors. |