Cpp ML Library  1.0.0
A library of Machine Learning Algorithmns seen from the Udemy course Machine Learning A to Z.
Classes | Public Member Functions | List of all members
RandomForestRegressor Class Reference

Implements a Random Forest Regressor. More...

#include <RandomForestRegressor.hpp>

Public Member Functions

 RandomForestRegressor (int n_estimators=10, int max_depth=5, int min_samples_split=2, int max_features=-1)
 Constructs a RandomForestRegressor. More...
 
 ~RandomForestRegressor ()=default
 Destructor for RandomForestRegressor.
 
void fit (const std::vector< std::vector< double >> &X, const std::vector< double > &y)
 Fits the model to the training data. More...
 
std::vector< double > predict (const std::vector< std::vector< double >> &X) const
 Predicts target values for given input data. More...
 

Detailed Description

Implements a Random Forest Regressor.

Constructor & Destructor Documentation

◆ RandomForestRegressor()

RandomForestRegressor::RandomForestRegressor ( int  n_estimators = 10,
int  max_depth = 5,
int  min_samples_split = 2,
int  max_features = -1 
)

Constructs a RandomForestRegressor.

Parameters
n_estimatorsThe number of trees in the forest.
max_depthThe maximum depth of the tree.
min_samples_splitThe minimum number of samples required to split an internal node.
max_featuresThe number of features to consider when looking for the best split. Defaults to sqrt(num_features).

Member Function Documentation

◆ fit()

void RandomForestRegressor::fit ( const std::vector< std::vector< double >> &  X,
const std::vector< double > &  y 
)

Fits the model to the training data.

Parameters
XA vector of feature vectors.
yA vector of target values.

◆ predict()

std::vector< double > RandomForestRegressor::predict ( const std::vector< std::vector< double >> &  X) const

Predicts target values for given input data.

Parameters
XA vector of feature vectors.
Returns
A vector of predicted target values.

The documentation for this class was generated from the following file: